

Platform of Targeted Therapeutics to Treat Metastatic Disease

Michael Dudley, Co-Founder, CEO email: michael.dudley@transcodetherapeutics.com

Contents

Executive Summary

Team & IP

The Problem: Metastasis

microRNA-10b: A Unique Biomarker

The Solution: Platform of Targeted Therapeutics

Clinical Strategy

Funding; deliverables; exits

Executive Summary

Therapeutic Solutions to Address 90% of Cancer Deaths

Problem: 90% of cancer deaths attributed to metastasis, not primary tumors from which they originate

Mission: Focus on treating Metastasis, Cancers that spread to other parts of the body

TransCode Discovery:

Metastatic tumor cells cannot survive without the overexpression of a specific non-coding RNA molecule, microRNA-10b, which regulates the viability of metastatic tumor cells.

microRNA-10b over-expression is validated in more than 18 different tumor types.

Inhibiting microRNA-10b \rightarrow death of metastatic tumor cells \rightarrow treating metastasis

TransCode has found a way to inactivate microRNA-10b resulting in the complete regression of established metastases with no recurrence and no toxicity.

TransCode has developed a portfolio of targeted therapeutics addressing multiple tumor types

TTX-MC138, TransCode's patented lead therapeutic, licensed from Massachusetts General Hospital, has achieved proof of concept both *in vitro* and *in vivo*. *In addition*, TransCode has also developed, patented and licensed a companion Biomarker test for non-invasive detection of microRNA activity.

Team

Board of Directors

- Michael Dudley, Co-Founder, CEO
- Thomas Fitzgerald, MBA, CFO
- Philippe Calais, PhD, Former CEO of Isarna Therapeutics B.V.

Management Team

- Michael Dudley, CEO
- Thomas Fitzgerald, MBA, CFO
- Oliver Steinbach, PhD, VP R&D*
- Zdravka Medarova, PhD, Co-Founder, Drug Discovery*
- Alan Freidman, Investor Relations

(* Identified individuals to be phased in once capitalized)

Corporate/Scientific Advisors

- Anna Moore, PhD, Co-Founder, Professor of Radiology and Physiology, Michigan State University
- Richard Peters, MD, PhD, President/CEO/Director,
 Merrimack Pharmaceuticals
- Jack Henneman, JD, Former CFO, NewLink Genetics
- Keith Flaherty, MD, Director of Termeer Center for Targeted Therapy, MGH Cancer Center
- Raghu Kalluri, MD, PhD, MD Anderson Cancer Center
- George Calin, MD, PhD, MD Anderson Cancer Center
- Carlo Croce, MD, Ohio State University Cancer Center
- Dmitry Samarsky, PhD, CTO, Sirnaomics
- Peter Ordentlich, PhD, CSO and Founder, Syndax
- Betsabeh Madani, MBA, MEng, EIR, Innovation Blvd.

Intellectual Property

Lead Therapeutic - Therapeutic Nanoparticles and Methods of Use Thereof

- Composition of Matter for TTX-MC138 (Patent expected to issue Q1 2019). Expires 2032
- Method Patent for treating metastatic breast cancer (Issued 4/17). Expires 2032

Biomarker - miRNA Profiling Compositions and Methods of Use

Nanosensor for non-invasive detection of microRNA activity (Issued 10/2/18). Expires
 2034

Freedom to Operate (FTO)

FTO completed on IP for TTX-MC138 by Goodwin Law LLP

IP License

Exclusive worldwide license with MGH signed November 22, 2018

In 2018, cancer will be responsible for 9.6 million* deaths globally and 90% are attributed to metastasis

^{*} World Health Organization: http://www.who.int/news-room/fact-sheets/detail/cancer

^{**}IQVIA Institute for Human Data Science

Identifying a Metastasis Target

Association of microRNA-10b and metastasis (spread of cancer) is <u>extensively</u> validated*

Across 18 > tumor types, over 120 studies (including a number of meta analysis publications) on microRNA-10b and metastasis have been published

Why microRNA-10b? A Unique Biomarker

4 separate meta-analysis studies involving 7,237 patients showed microRNA-10b:

©TransCode Therapeutics, Inc. 2019 All Rights Reserved

Solution: Proprietary Targeted Solution

Lead Therapeutic Candidate: TTX-MC138

IONP + Inhibitory Oligonucleotide sequenced to miRNA-10b

- ✓ Eliminates metastasis by inhibiting microRNA-10b
- ✓ Inhibition results in death of metastatic tumor cells
- ✓ Proven delivery system optimized for designated target
- √ Image guided delivery key competitive advantage
- ✓ Unique capability to accumulate at metastatic sites

TTX-MC138: Mechanism of Action: Eliminates metastasis by inhibiting microRNA-10b

Delivery System Comparison

Company	Delivery system	Particle size	Zeta Potential* +0-60 scale	Toxicity potential Scale 0-10	Immunogenicity potential Scale 0-10	LNAs	Comments
TransCode Therapeutics	Iron oxide nanoparticles (Image capable)	20 nm	+50 mV	0-2	0-2	Yes	Dextran coating = rapid uptake
MiRNA	Lipid nanoparticles	120 nm	+20 mV	8-10	8-10	No	Patient deaths in clinic due to high toxicity
Miragen	Modified oligonucleotides	NA	-	0-2	0-2	Yes	Off target effects due to lack of a carrier for delivery
Regulus Therapeutics	GalNAc- conjugation; Lipid nanoparticles	100 nm	+20 mV	8-10	8-10	No	Cancelled clinical due to high toxicity
Arcturus Therapeutics	LUNAR® Lipid nanoparticle	40-50 nm	neutral	unknown	unknown	No	None
Santaris (Roche)	Modified oligonucleotides	NA	-	2-4 due to targeting the liver	2-4	Yes	Well tolerated in clinical trials

^{*} Higher value associated with greater stability in solution

Proof of Concept

Pre-Clinical POC: TTX-MC138

Stage II/III Metastatic Triple-Negative Breast Cancer, Mouse Model

- TTX-MC138 superior to control + low-dose doxorubicin*
- Eliminates pre-existing *local* metastases

After metastases were eliminated, the therapy was stopped in both models and there was no recurrence or toxicity

Stage IV Metastatic Triple-Negative Breast Cancer, Mouse Model

- TTX-MC138 superior to control + low-dose doxorubicin*
- Eliminates pre-existing *distant* metastases

NT - No therapy
C - Control (Irrelevant oligo)
T - TTX-MC138
dox - low-dose doxorubicin

^{*}Doxorubicin was used to slow down cell division in tumor cells. In pre-clinical studies that utilize aggressive metastatic tumor models, the use of doxorubicin was necessary to allow TTX-MC138 to fully inhibit microRNA-10b. Because metastatic growth is slower in humans, the use of a cytostatic such as doxorubicin will likely be unnecessary, and TTX-MC138 would be administered as a monotherapy.

Biomarker Test

- TransCode's predictive biomarker nanosensor has the unique capability of microRNA profiling in intact live cells and tissues.
- The fluorescent read-out generated by the nanosensor is highly specific and has nanomolar sensitivity.

Biomarker Test Utility

Early detection reduces mortality in Cancer patients. Expression of microRNA-10b can be used as a diagnostic biomarker to detect the presence of metastasis as well as a biomarker to predict overall survival and disease-free survival in cancer. TransCode has patented a biomarker test to measure the expression of any microRNA in patients.

Therapeutic Pipeline*

Therapeutic	Target	Discovery	In vitro**	Preclinical	Phase II/III
	miR-10b	MTNBC			
	miR-10b	Colorectal cancer			
TTX-MC138	miR-10b	NSCL cancer			
	miR-10b	Pancreatic cancer***			
	miR-10b	Glioblastoma**			
	miR-10b	Hepatocellular cancer*	**		
Lin28b Inhibitor	Lin28b	Pancreatic cancer***			
anti-miR-xxx	miR-xxx	Other cancer types			
siRNA PD-L1		Pancreatic Cancer***			

^{*}Pipeline currently in development – selected therapeutics and targets may change

^{**} TTX-MC138 demonstrated therapeutic efficacy *in vitro* in 77% of 624 human tumor cell lines representing the spectrum of metastatic and non-metastatic cancers. *PLOS ONE* | https://doi.org/10.1371/journal.pone.0201046 July 2018

^{***}Cancer types classified as orphan diseases

Clinical POC Strategy: Adaptive Trial Design

- · PhIIa trial Single IND
- Up to 6 different tumor types
- Patients with cancer types with known microRNA-10b over-expression
- Enroll additional patients in the arm showing the greatest success
- Enable continuation from PhIIa to PhIII

TransCode

Therapeutic Programs – Projected Milestones (Subject to Pre-IND meeting with FDA)

^{*} License in process

Funding

Investment to date

- · \$550,000
 - MGH License
 - · New Website
 - Patent Expenses
 - Marketing Communications
 - · Other Legal expenses
- Grants to date \$5.3M*
 - · Therapeutic development
 - Biomarker development
 - Preclinical POC

Seed Round

- Up to \$1.5M Convertible note
- Converts to Series A valuation
 - Pre-IND development costs
 - Develop and file new intellectual property
 - Conduct preclinical studies supporting new IP
 - · Retain Investment Bank
 - Pre-IND meeting with FDA
 - IND Regulatory package

Series A Investment Round

- Investment Bank Outcome Capital**
- \$36M Series A Preferred
 - Hire management team
 - · IND Enabling Studies TTX-MC138
 - · File IND
 - · Phase IIa clinical trial
 - Achieve clinical POC
 - · Expand IP portfolio
 - In-license other microRNA assets

^{*}NIH Grants to researchers while at MGH

^{**} www.outcomecapital.com

Seed Round Use of Proceeds

Path to Liquidity

